Parallel Decomposition Approaches for Training Support Vector Machines
نویسندگان
چکیده
We consider parallel decomposition techniques for solving the large quadratic programming (QP) problems arising in training support vector machines. A recent technique is improved by introducing an efficient solver for the inner QP subproblems and a preprocessing step useful to hot start the decomposition strategy. The effectiveness of the proposed improvements is evaluated by solving large-scale benchmark problems on different parallel architectures.
منابع مشابه
A parallel solver for large quadratic programs in training support vector machines
This work is concerned with the solution of the convex quadratic programming problem arising in training the learning machines named support vector machines. The problem is subject to box constraints and to a single linear equality constraint; it is dense and, for many practical applications, it becomes a large-scale problem. Thus, approaches based on explicit storage of the matrix of the quadr...
متن کاملParallel Software for Training Large Scale Support Vector Machines on Multiprocessor Systems
Parallel software for solving the quadratic program arising in training support vector machines for classification problems is introduced. The software implements an iterative decomposition technique and exploits both the storage and the computing resources available on multiprocessor systems, by distributing the heaviest computational tasks of each decomposition iteration. Based on a wide rang...
متن کاملA Class of Convergent Parallel Algorithms for SVMs Training
The training of Support Vector Machines may be a very difficult task when dealing with very large datasets. The memory requirement and the time consumption of the SVMs algorithms grow rapidly with the increase of the data. To overcome these drawbacks, we propose a parallel decomposition algorithmic scheme for SVMs training for which we prove global convergence under suitable conditions. We outl...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003